7,716 research outputs found

    Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    Full text link
    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12_{12} systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12_{12} samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3K. This DMC approach can be applicable to other SMM systems, and could be used to study other properties of SMM systems.Comment: Phys Rev B, accepted; 10 pages, 6 figure

    Natural optical activity and its control by electric field in electrotoroidic systems

    Get PDF
    We propose the existence, via analytical derivations, novel phenomenologies, and first-principles-based simulations, of a new class of materials that are not only spontaneously optically active, but also for which the sense of rotation can be switched by an electric field applied to them-- via an induced transition between the dextrorotatory and laevorotatory forms. Such systems possess electric vortices that are coupled to a spontaneous electrical polarization. Furthermore, our atomistic simulations provide a deep microscopic insight into, and understanding of, this class of naturally optically active materials.Comment: 3 figure

    Long-Term Human Video Generation of Multiple Futures Using Poses

    Full text link
    Predicting future human behavior from an input human video is a useful task for applications such as autonomous driving and robotics. While most previous works predict a single future, multiple futures with different behavior can potentially occur. Moreover, if the predicted future is too short (e.g., less than one second), it may not be fully usable by a human or other systems. In this paper, we propose a novel method for future human pose prediction capable of predicting multiple long-term futures. This makes the predictions more suitable for real applications. Also, from the input video and the predicted human behavior, we generate future videos. First, from an input human video, we generate sequences of future human poses (i.e., the image coordinates of their body-joints) via adversarial learning. Adversarial learning suffers from mode collapse, which makes it difficult to generate a variety of multiple poses. We solve this problem by utilizing two additional inputs to the generator to make the outputs diverse, namely, a latent code (to reflect various behaviors) and an attraction point (to reflect various trajectories). In addition, we generate long-term future human poses using a novel approach based on unidimensional convolutional neural networks. Last, we generate an output video based on the generated poses for visualization. We evaluate the generated future poses and videos using three criteria (i.e., realism, diversity and accuracy), and show that our proposed method outperforms other state-of-the-art works

    A Variational Framework for the Simultaneous Segmentation and Object Behavior Classification of Image Sequences

    Get PDF
    In this paper, we advance the state of the art in variational image segmentation through the fusion of bottom-up segmentation and top-down classification of object behavior over an image sequence. Such an approach is beneficial for both tasks and is carried out through a joint optimization, which enables the two tasks to cooperate, such that knowledge relevant to each can aid in the resolution of the other, thereby enhancing the final result. In particular, classification offers dynamic probabilistic priors to guide segmentation, while segmentation supplies its results to classification, ensuring that they are consistent with prior knowledge. The prior models are learned from training data and updated dynamically, based on segmentations of earlier images in the sequence. We demonstrate the potential of our approach in a hand gesture recognition application, where the combined use of segmentation and classification improves robustness in the presence of occlusion and background complexity

    Proton-Antiproton Annihilation in Baryonium

    Full text link
    A possible interpretation of the near-threshold enhancement in the (ppˉ)(p\bar{p})-mass spectrum in J/ψ→γppˉJ/\psi{\to}\gamma p{\bar p} is the of existence of a narrow baryonium resonance X(1860). Mesonic decays of the (ppˉ)(p\bar{p})-bound state X(1860) due to the nucleon-antinucleon annihilation are investigated in this paper. Mesonic coherent states with fixed GG-parity and PP-parity have been constructed . The Amado-Cannata-Dedoder-Locher-Shao formulation(Phys Rev Lett. {\bf 72}, 970 (1994)) is extended to the decays of the X(1860). By this method, the branch-fraction ratios of Br(X→η4π)Br(X\to \eta 4\pi), Br(X→η2π)Br(X\to \eta 2\pi) and Br(X→3η)Br(X\to 3\eta) are calculated. It is shown that if the X(1860) is a bound state of (ppˉ)(p\bar{p}), the decay channel (X→η4π)X\to \eta 4\pi) is favored over (X→η2π)(X\to \eta 2\pi). In this way, we develop criteria for distinguishing the baryonium interpretation for the near-threshold enhancement effects in (ppˉ)(p\bar{p})-mass spectrum in J/ψ→γppˉJ/\psi{\to}\gamma p{\bar p} from other possibilities. Experimental checks are expected. An intuitive picture for our results is discussed.Comment: 19 pages, 3 figure

    A novel minimal in vitro system for analyzing HIV-1 Gag mediated budding

    Full text link
    A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real time interaction of Gag, RNA and lipid leading to the formation of mini-vesicles was measured using confocal microscopy. Gag forms resolution limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation but exterior to the surface. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.Comment: 27 pages, 9 Figures and 0 Table

    The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model

    Full text link
    The integrated Sachs-Wolfe (ISW) effect is an important implication for dark energy. In this paper, we have calculated the power spectrum of the ISW effect in the time varying vacuum cosmological model, where the model parameter β=4.407\beta=4.407 is obtained by the observational constraint of the growth rate. It's found that the source of the ISW effect is not only affected by the different evolutions of the Hubble function H(a)H(a) and the dimensionless matter density Ωm(a)\Omega_m(a), but also by the different growth function D+(a)D_+(a), all of which are changed due to the presence of matter production term in the time varying vacuum model. However, the difference of the ISW effect in Λ(t)CDM\Lambda(t)\textmd{CDM} model and ΛCDM\Lambda \textmd{CDM} model is lessened to a certain extent due to the integration from the time of last scattering to the present. It's implied that the observations of the galaxies with high redshift are required to distinguish the two models
    • …
    corecore